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Abstract

Atherosclerosis is the principal contributor to the pathogenesis of myocardial and cerebral infarction, gangrene and loss of function in
the extremities. It results from an excessive inflammatory-fibroproliferative response to various forms of insult to the endothelium and
smooth muscle of the artery wall. Atherosclerotic lesions develop fundamentally in three stages: dysfunction of the vascular endothelium,
fatty streak formation and fibrous cap formation. Each stage is regulated by the action of vasoactive molecules, growth factors and cytokines.
This multifactorial etiology can be modulated through the diet. The degree of unsaturation of dietary fatty acids affects lipoprotein
composition as well as the expression of adhesion molecules and other pro-inflammatory factors, and the thrombogenicity associated with
atherosclerosis development. Thus, the preventive effects of a monounsaturated-fatty acid-rich diet on atherosclerosis may be explained by
the enhancement of high-density lipoprotein-cholesterol levels and the impairment of low-density lipoprotein-cholesterol levels, the
low-density lipoprotein susceptibility to oxidation, cellular oxidative stress, thrombogenicity and atheroma plaque formation. On the other
hand, the increase of high-density lipoprotein cholesterol levels and the reduction of thrombogenicity, atheroma plaque formation and
vascular smooth muscle cell proliferation may account for the beneficial effects of polyunsaturated fatty acid on the prevention of
atherosclerosis. Thus, the advantages of the Mediterranean diet rich in olive oil and fish on atherosclerosis may be due to the modulation
of the cellular oxidative stress/antioxidant status, the modification of lipoproteins and the down-regulation of inflammatory mediators. ©
2003 Elsevier Inc. All rights reserved.

1. Introduction

Atherosclerosis, the principal cause of heart attack,
stroke and gangrene of the extremities, accounts for 50% of
mortality in the USA, Europe and Japan. The American
Heart Association estimates that cardiovascular diseases
affect 57 million Americans, and each year cause 954,000
deaths and cost 259 billion dollars.

Atherosclerosis and inflammation share similar mecha-
nisms in their early phases, when the interactions between

the vascular endothelium and circulating leukocytes are
increased. Two key initial events within the arterial wall
during early atherogenesis are the recruitment and differen-
tiation of circulating monocytes, and the uptake of choles-
terol and oxidized low-density lipoproteins (LDL) by tissue
macrophages to form lipid-foam cells, involved in atheroma
plaque generation. Adhesion molecules participate in leu-
kocyte-endothelial interactions and the extravasation of
monocytes. Adhesion molecules such as intercellular adhe-
sion molecule-1 (ICAM-1), vascular cell adhesion mole-
cule-1 (VCAM-1) and E-selectins are strongly expressed on
macrophages within atherosclerotic plaques [1] and the dis-
ruption of their expression protects against atherosclerosis
[2]. Thus, the initiation and early phases of atherosclerosis
like fatty streak and fibrous cap formation depend mainly on
the specific conditions of cellular contact and the transient
or repeated synthesis of soluble mediators.

Hypolipidemic drugs like cholestyramine, colestipol, st-
atins and fibrates reduce serum triglycerides and LDL-cho-
lesterol to various extents and increase high-density lipopro-

Abbreviations: LDL, low-density lipoproteins; ICAM-1, intercellular
adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; HDL,
high-density lipoproteins; MUFA, monounsaturated fatty acids; PUFA,
polyunsaturated fatty acids; VSMC, vascular smooth muscle cells; AA,
arachidonic acid; DHA, docosahexaenoic acid; CETP, cholesterol ester
transfer protein; EPA, eicosapentaenoic acid;•NO, nitric oxide; O2

•�,
superoxide anion; IL, interleukin; TNF, tumour necrosis factor; PLA2,
phospholipase A2; MSR, macrophage scavenger receptor

* Corresponding author.
E-mail address: mmitjavila@ub.edu (M.T. Mitjavila).

Journal of Nutritional Biochemistry 14 (2003) 182-195

0955-2863/03/$ – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0955-2863(02)00294-2



tein (HDL)-cholesterol levels. However, these drugs have
also numerous and significant side effects. The diet can be
improved by modifying the amount and the type of fat
ingested, which also conditions the lipid profile, without
side effects and a much lower cost than drugs. Data from the
seven countries study [3] suggest that the Mediterranean
diet, which is rich in monounsaturated fatty acids (MUFA),
primarily as olive oil (Fig. 1), is associated with low car-
diovascular disease rates. Likewise, epidemiological studies
show an inverse correlation between the intake of long-
chain n-3 polyunsaturated fatty acids (PUFA) present in fish
and fish oil (Fig. 1) and the incidence of cardiovascular
diseases such as atherosclerosis [4]. However, there are
controversial reports on the cellular and molecular mecha-
nisms involved in these preventive effects. The present
review brings together evidence on the effect of the degree
of unsaturation of fatty acids in the diet on the mechanisms
of development of atherosclerosis, namely cholesterol and
LDL levels, LDL oxidation, oxidative stress, the hemostatic
system, induction of the atheroma plaque by macrophages,
and vascular smooth muscle cell (VSMC) proliferation.

2. Effects of unsaturated fatty acids on lipids and
lipoproteins

Post-prandial fats circulate in the blood stream as chy-
lomicrons. They are cleared by the liver, where they are
converted to very low-density lipoproteins, LDL and HDL.
However, chylomicrons remnants are as atherogenic as
LDL cholesterol and stimulate the formation of highly
atherogenic small dense LDL. LDL holds cholesteryl esters

and triglycerides in the lipophilic core that is surrounded by
a monolayer of phospholipids and free cholesterol [5].
LDLs bind many fatty acid molecules and nearly half of
them are PUFA. Linoleic acid accounts for 86% of PUFA
and is mainly (65%) contained in the cholesteryl esters,
whereas arachidonic acid (AA) accounts for 12% and is
mostly (68%) found in the phospholipids. Docosahexaenoic
acid (DHA) is present in trace amounts, mainly in phospho-
lipids [6]. The type of fatty acids varies greatly from one
individual to another, probably owing to differences in
dietary habits.

The plasma post-prandial triglyceride concentration has
been assessed by Roche et al. [7] in subjects fed either a
high MUFA, low saturated fat diet (18% and 12% of energy
as fat, respectively) or a low MUFA, high saturated fat diet,
(14% and 17% of energy as fat, respectively) for 8 weeks.
It returns to near-fasting concentration much earlier in sub-
jects fed on the MUFA-rich diet than in those fed the
saturated fat-rich diet. Similar results have been obtained
after an extra-virgin olive oil-rich meal [8]. Moreover, nu-
merous intervention studies have shown that the substitution
of dietary saturated fatty acids by unsaturated fatty acids
also has hypocholesterolemic effects [9,10]. MUFA- and
PUFA-rich diets decrease the levels of total plasma choles-
terol and LDL-cholesterol and increase HDL-cholesterol in
healthy normolipidemic subjects [11,12] and in mouse mod-
els of atherosclerosis [13]. The primary source of MUFA
that lowers cholesterol levels is olive oil [7,8,14,15], but
canola oil [16] and nut- and peanut-derived products
[15,17–19] have similar effects. The cholesterol ester trans-
fer protein (CETP) mediates the transfer of cholesteryl es-
ters from HDL to apolipoprotein B-containing lipoproteins.
The isoenergetic replacement of a high-saturated fatty acid
diet by a high-MUFA or a high-carbohydrate low-fat diet
decreases the CETP concentration in young, healthy,
normolipidemic subjects [20]. CETP activity may be regu-
lated by the concentration of cholesterol in plasma [21] and
it is decreased by an oleic acid-rich diet and enhanced by a
palmitic acid-rich diet in hamsters [22]. All these studies
shed some light on the beneficial effects of the Mediterra-
nean diet, which may partially explain the lower rate of
cardiovascular diseases observed in the Mediterranean area.

Fish and fish oils contain very-long chain and highly
unsaturated n-3 PUFA such as eicosapentaenoic acid (EPA,
20:5n-3) and DHA (22:6n-3) (Fig. 1), which are derived
from phytoplankton. Fish oils reduce the synthesis of chy-
lomicrons by the intestine and/or increase their removal
from circulation, thus decreasing postprandial lipemia [23].
Chylomicron remnants are selectively cleared after the in-
gestion of n-3 PUFA [24]. In this regard, Lambert et al. [25]
reported that labeled [1-14C]oleate and [1,2-3H]cholesterol
in chylomicrons remnants derived from fish oil are incor-
porated into phospholipids more efficiently than those de-
rived from olive, corn or palm oil remnants and that fish oil
remnants are metabolized more rapidly than palm oil rem-
nants. We would like to highlight that, the hypolipidemic

Fig. 1. Comparison of the composition of long-chain fatty acids in olive,
corn and fish oils. Oleic acid is the main fatty acid in olive oil, whereas
corn oil is rich in PUFA such as linoleic acid, a precursor of AA. Fish oil
contains EPA and DHA but not linoleic acid.
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effect of fish oil is stronger on hyperlipidemic patients than
on normal subjects [26]. Cholesterol concentration in
plasma is decreased by fish oil and by n-3 PUFA in patients
with type V hyperlipidemia who do not tolerate any other
type of dietary fat [26–28]. The slight effect of fish oil on
plasma LDL and HDL, as against the decrease in very
low-density lipoproteins and triacylglycerol concentrations,
is the result of factors such as the smaller very low-density
lipoprotein particle produced, which is more likely to be
converted to LDL [29], by the direct effect on the synthesis
of LDL by the liver and by lowerring the saturated fat
intake. These effects depend largely on the dose and type of
n-3 PUFA content of fish oil used.

In conclusion, although the ingestion of n-3 PUFA has a
lower effect than MUFA on plasma cholesterol and on LDL
and HDL cholesterol levels [3,26,30], both diets decrease
triacylglycerol levels, increase the HDL/LDL-cholesterol
ratio and decrease the total cholesterol/HDL-cholesterol ra-
tio, thus reducing the risk of atherosclerosis and coronary
artery disease.

3. Effects of unsaturated fatty acids on LDL oxidation

Endothelial cells [31], smooth muscle cells [32] and
macrophages [33] oxidize LDL. According to the oxidation
theory of atherosclerosis [34], oxidation begins on the pho-
spolipids present on the surface of LDL particles, and prop-
agates to the lipophilic core, rich in cholesteryl esters and
triglycerides. The resulting aldehydes, especially hy-
droxynonenal, bind to the apolipoprotein B moiety of LDL.
This modified LDL contains acetyl groups or analogous
modifications that are recognized by scavenger receptors.
The oxidized LDL bound to the receptors is rapidly taken up
by the macrophages present in the subendothelial space.
Thus, intracellular cholesterol accumulates and may convert
the macrophages into lipid loaded foam cells. The oxidative
modifications of LDL are involved in the initiation and
progression of atherosclerosis and are mainly due to the
depletion of endogenous antioxidants followed by oxidation
of PUFA. An excess of oxidized LDL in macrophages can
induce necrosis or apoptosis and the subsequent release of
proteolytic enzymes and transition-metal ions, such as iron
[35] and copper [36], may contribute to the development of
advanced atherosclerotic lesions. In this regard, copper ions
have been detected in these lesions [37].

Several authors have reported that even in normal sub-
jects, the LDL predisposition to oxidation varies greatly
[38,39]. So far this marked variability under the same oxi-
dative stress is not understood. The susceptibility to oxida-
tion is modulated by intrinsic and extrinsic factors to LDL
particles [40] and the production of reactive oxygen species
in the vicinity of LDL.

3.1. Intrinsic factors

3.1.1. Concentrations of LDL and HDL
As the oxidative modifications of LDL are crucial for the

initiation of atherosclerosis, a reduction in plasma LDL
levels may be involved in the prevention mechanisms.
Moreover, it seems that high levels of HDL also prevents
the generation of an oxidative modified LDL. Several mech-
anisms have been involved in the beneficial effect of HDL,
e.g. reverse cholesterol transport [41] and, transfer of per-
oxidized lipids from LDL to HDL [42], followed by their
degradation by enzymes associated with HDL, like para-
oxonase, which prevent LDL oxidation [43]. However, the
exact mechanisms by which HDL provides protection
against coronary heart disease are still a matter of debate.
Thus, the reduction of LDL levels and the increase in HDL
levels by a MUFA-rich diet are correlated with the benefi-
cial effects against atherosclerosis even stronger than those
of PUFA supplementation.

3.1.2. Degree of unsaturation of fatty acids in LDL
There is considerable disparity in the indices of LDL

susceptibility to oxidation measured ex vivo. The most cur-
rently used techniques to asses LDL oxidation is the con-
jugated dienes or the thiobarbituric reactive substances for-
mation mediated by metal ion-dependent (copper) and
-independent methods (2,2�-azobis(2-aminopropane) dihy-
drochloride). The copper-mediated oxidation involves a
site-specific mechanism which may be more relevant in vivo
[44]. Copper binds to the surface of LDL particles and
breakdown performed lipid peroxides to chain-propagating
radicals. Copper-mediated oxidation also allows the mea-
surement of the phosphatidylcholine hydroperoxides and
cholesteryl ester hydroperoxides generated during the oxi-
dation process from the LDL surface and the lipophilic core,
respectively. In addition it is possible to identify the cho-
lesteryl ester hydroperoxides derived from specific fatty
acids. The 2,2�-azobis(2-aminopropane) dihydrochloride
generate peroxyl radicals in an aqueous phase [45] and
produces random attack of free radicals in LDL. It does not
require the binding to LDL and can act in the absence of
lipid peroxides.

The amount of MUFA and PUFA in LDL may provide
great insight to the LDL susceptibility to oxidation.
Ramirez-Tortosa et al. [46] studied the effect of two table-
spoons/day of either extra-virgin oil to men with peripheral
vascular diseases for 3 months. Extra-virgin oil was signif-
icantly more effective in reducing the slope of the line
reflecting thiobarbituric acid reactive substances formation
after 24 hr of oxidation ex vivo in the presence of copper.
The antioxidants present in extra-virgin oil (not thermally or
chemically treated) may contribute to this effect. However,
the performance of olive oils has not been compared with
that of other types of vegetable oils. On the other hand,
other sources of dietary MUFA have distinct effects on LDL
oxidation. Thus, supplementation with peanut oil to humans
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increases the oxidation rate when compared with olive oil,
without modifying the lag time or the amount of conjugated
dienes [47]. This may be due to the lower ratio of saturation/
unsaturation [48] or 18:1/18:2 ratios [49–53]. Thus, a saf-
flower oil-enriched diet (high in n-6 PUFA) containing
cholate was compared with a Paigen diet (saturated fat diet
containing cholate) in mouse and results showed a shorter
lag time in the former group [13]. The administration of
olive oil (rich in MUFA) or grape seed oil (high in diun-
saturated fatty acids) to humans in a crossover study design
revealed that the rate of LDL oxidation ex vivo was higher
after administering the diunsaturated fatty acid diet [49]. In
this regard, numerous authors have reported that LDL par-
ticles from subjects fed olive oil-rich diets are less suscep-
tible to oxidation than LDL particles from subjects fed a
baseline diet [54], a PUFA-rich diet [49–51,55,56], or even
a carbohydrate diet [57].

Despite the favorable effects of diets high in unsaturated
fat on lipid profiles [58,59], there is concern that PUFA-rich
diets may increase the oxidative susceptibility of LDL.
Studies evaluating this issue have revealed conflicting re-
sults after the administration of fish oil-rich diets or the
long-chain PUFA, e.g. the EPA and DHA contained in fish
and fish oils. In some studies, LDL showed enhanced oxi-
dizability [60–65], whereas other studies revealed no in-
crease in LDL oxidation [66–73]. Among the most plausi-
ble factors involved in these controversial results are the
dose and time of supplementation with n-3 PUFA and the
method and the criteria chosen to evaluate LDL oxidation.
Higdon et al. [72] studied several parameters related to LDL
oxidation in postmenopausal women fed moderate doses of
fish oil (15 g/day) for five weeks. The results indicated a
more rapid loss of �-tocopherol and a shorter lag time in
phosphatidylcholine hydroperoxide and cholesteryl li-
noleate hydroperoxide formation. However, the maximal
rates of both hydroperoxides were lower and the loss of total
PUFA was not greater in LDL from subjects supplemented
with fish oil than in those supplemented with oils rich in
oleic and linoleic acids. In conclusion, these observations
leave open the possibility that overall, the total oxidation of
the LDL particle ex vivo is not increased by FO supplemen-
tation.

Short lag time and slow oxidation rates have been ex-
tensively reported in humans after feeding a fish oil-rich diet
[63,70,72,74,75]. The slow oxidation rate appears paradox-
ical and supports the new hypothesis that LDL with highly-
unsaturated fatty acids are not necessarily oxidized more
rapidly than those with fewer double bonds. Several expla-
nations have been postulated. Brude et al. [71] reported that
a reduced oxidation rate following n-3 PUFA supplemen-
tation results from the tight packing of EPA and DHA,
making double bonds less available for free radical interac-
tions. Moreover, the amount of conjugated dienes or thio-
barbituric acid reactive substances generated during LDL
oxidation depends on the lipid composition. It has been
suggested that after the administration of a fish oil-rich diet,

n-3 PUFAs form more polar radicals [76], which may be
located on the surface of LDL particles, resulting in slower
propagation rates because the more polar radicals reach the
lipophilic core more slowly, thus decreasing the rate of
termination.

At present it is difficult to ascertain the proatherogenic
role of n-3 PUFA by increasing the oxidative susceptibility
of LDL to oxidation. Further studies are needed to reach a
conclusion, and other factors may be involved in the car-
diovascular protective effects of fish and fish oil.

3.1.3. Antioxidants in LDL
The rate of lipid hydroperoxides formation during LDL

oxidation is inversely correlated with the level of �-tocoph-
erol [5]. Moreover, as the LDL particle must first be de-
pleted of its antioxidants before oxidation can proceed, lag
time may be a more relevant indicator of the oxidation
status in vivo than the rate of oxidation. A higher degree of
unsaturation of fatty acids incorporated into LDL particles
may be indicative of lipid radical generation and so reduced
protection against oxidation by the consumption of antioxi-
dants in LDL.

Two studies have compared the supplementation of a
normal diet with a mixture of high amounts of �-carotene,
�-tocopherol and ascorbic acid (equal or higher than 60
mg/day, 800 mg/day and 1 g/day, respectively) for three
months with supplementation of �-tocopherol alone at the
same dose used in the mixture [77,78]. The combined an-
tioxidants and �-tocopherol alone increased the lag time and
decreased the oxidation rate to the same extent. On the other
hand, �-carotene alone did not protect LDL against oxida-
tion [79–81]. It can be concluded that �-tocopherol may be
the most effective antioxidant in protecting LDL against
oxidation. Moreover, lower amounts of combined antioxi-
dants were also effective [71,82]. In this regard, Brude et al.
[71] administered a capsule containing a combination of 15
mg of �-carotene, 75 mg of vitamin E and 150 mg of
vitamin C plus another capsule containing 30 mg of coen-
zyme Q10 for 6 weeks to hyperlipidemic male smokers.
They observed increases of 28% and 35% in the lag time
after 3 and 6 months of supplementation, respectively, but
no changes in the level of malondialdehyde generated.
However, we must consider that �-tocopherol can also be
pro-oxidant rather than protective for lipids in isolated LDL
[83], through the generation of �-tocopheroxyl radicals.
Thus, the beneficial effect of supplementing with vitamin E
alone may be explained by the simultaneous uptake of other
antioxidants present in the diet [83].

LDL isolated from mild hypercholesterolemic subjects
receiving a linoleic acid-rich diet and an oleic acid-rich diet
showed the same levels of vitamin E and coenzyme Q10

[84]. However, �-tocoferol levels in LDL decrease when
administering fish oil [72,73], although according to Turini
et al. [64] the LDL antioxidant status is not affected by
supplementing 25 g/day of fish oil (provided 7,5 g of n-3
PUFA) for 30 days.
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The propagation phase of phosphatidylcholine hydroper-
oxides generation begin prior to the depletion of �-tocoph-
erol and is slowed once the LDL particle is depleted of
�-tocopherol in subjects fed a fish oil-rich diet [72]. This
effect was even stronger when subjects were fed with a fish
oil-rich diet than when fed with a safflower- or sunflower-
rich diets [72]. Practitioners are advised to supplement an
n-3 PUFA-rich diet with antioxidants to protect fatty acids
against oxidation. Brude et al. [71] also supplemented sub-
jects with capsules containing n-3 PUFA (5 g of EPA and
DHA) and with the same combination of antioxidants as
described above. The results obtained indicated no changes
in the oxidizability parameters of control group or the group
fed only with the n-3 PUFA-rich capsules, but protection
was lower than when only the antioxidant was supple-
mented.

The various conditions of the diet and the complexity of
LDL particles and the ex vivo methods used to evaluate
LDL oxidation hinder the extrapolation of the ex vivo results
to an in vivo situation. The measurement of antioxidants in
the vessel wall, the basal levels of conjugated dienes or
thiobarbituric acid reactive substances in LDL, the relative
electrophoretic mobility of LDL or the presence of oxidized
LDL antibodies in plasma were expected to give a more
realistic indication of the in vivo oxidation status of LDL.
However, the correlation between oxidized LDL and circu-
lating oxidizied LDL autoantibodies is not clear [85,86].

3.2. Extrinsic factors

Extrinsic factors such as the level of antioxidants and the
free radical generation in the vicinity of LDL particles can
also modulate LDL oxidation. Moreover, dietary fats are
known to interact with these extrinsic factors. The beneficial
effects of an olive oil-rich diet on LDL oxidation may be
due to its high levels of oleic acid and the associated
reduction of PUFA and to the presence of minor compo-
nents such as flavonoids and phenolic compounds [87–89].
De la Cruz et al. [90] reported that olive oil supplements in
the diet reduce lipid peroxidation in heart, aorta and plate-
lets. Visioli et al. [91] found that the polyphenolic com-
pounds of olive oil, which are regarded as natural antioxi-
dants, inhibit the formation of cytotoxic products such as
LDL lipid peroxides and thus delay the onset of atheroscle-
rotic damage. Thus, the intake of extra-virgin olive oil,
containing 32-35 mg/day of total phenols and other unsa-
ponifiable compounds, may limit LDL oxidation [46].

N-3 PUFA affects endogenous antioxidant systems. Vi-
tamin E requirements are higher in a fish oil-rich diet than
in a soybean oil-rich diet [92]. However, fish oil supple-
mentation raises platelet and plasma �-carotene levels
[93,94]. We found low levels of �-tocopherol and catalase
activity in erythrocyte membranes after administration of a
fish oil-rich diet to rats for four months [95]. Such adaptive
effects may explain why the enhanced oxidizability of LDL
is more frequent after short-term [60–63] than after long-

term supplementation of n-3 PUFA [66–70,73]. Further
studies are needed to explain the wide range of antioxidant
levels found in various compartments of the body following
the ingestion of n-3 PUFA-rich diets.

Another extrinsic factor involved in the pathogenesis of
many cardiovascular diseases, including atherosclerosis, is
oxidative stress. The free radical species generated by
monocytes/macrophages and endothelial cells from the ar-
tery wall may oxidize LDL. Moreover, the fatty acids
present in the diet can modulate LDL production and their
susceptibility to oxidation.

4. Effects of unsaturated fatty acids on cellular
oxidative stress

Endothelium dysfunction may be due to the enhance-
ment of reactive oxygen species and to the increased rate of
inactivation of nitric oxide (•NO) [96]. Cherny et al. [97]
have described the activation of NADPH oxidase and the
subsequent superoxide (O2

•�) production by free AA.
MUFA- and n-3 PUFA-rich diets, by replacing AA by oleic
acid and by EPA and DHA in phospholipid membranes,
respectively, impair the release of AA from membranes [98]
and thus modify the release of free radicals. Compared with
a diet rich in linoleic acid, dietary olive oil has no effect on
O2

•� release by human monocytes [99] or mouse [100] and
rat [101] macrophages ex vivo (Table 1). Results obtained
with n-3 PUFA vary according to the animal species and
experimental model tested. Thus, monocytes/macrophages
from humans fed with n-3 PUFA show a lower production
of O2

•� [102]. However, O2
•� production in rat and mouse

macrophages is higher than in animals fed a diet rich in
oleic acid [100] or linoleic acid [100,101]. Robinson et al.
[103] reported that PUFA such as AA, EPA and DHA
induced O2

•� production in vitro by human neutrophils
through phospholipase A2 (PLA2) activation. These data
may explain the lower O2

•� production in cells of rats fed
an olive oil-rich diet.

As mentioned in the previous section, virgin olive oil
contains numerous minor components with antioxidant ac-
tivity. Visioli et al. [104] reported that the administration of
phenol-rich olive oil was dose-dependently associated with
the decreased urinary excretion of 8-iso-PGF2�, a biomarker
of oxidative stress. Leger et al. [105] observed that poly-
phenol-rich olive oil wastewater fractions decreased O2

•�

production in cultured human promonocyte cells and scav-
enged O2

•�. Given the role of O2
•� in LDL oxidation and

oxidized LDL in atheroma plaques, these results point to the
anti-atherogenic role of minor components of olive oil such
as polyphenols.

No studies have been carried out on the direct effect of
MUFA on •NO generation. However, it has been shown that
an olive oil-rich diet markedly lowers the daily anti-hyper-
tension dosage required, possibly through enhanced •NO
levels [106]. The effects of n-3 PUFA-rich diets on •NO
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generation by rat and mouse macrophages through the ac-
tivation of inducible NO synthase are uniform when a lino-
leic acid-rich diet is supplemented, and enhance •NO gen-
eration [100,101,107,108]. Endothelial cells contain
endothelial NO synthase, a constitutive isoform that also
generates •NO. The Vanhoutte group described the release
of relaxing factors by n-3 PUFA both in vitro [109] and in
vivo [110]. We observed that the administration of a Men-
haden oil-rich diet increases the resting level of •NO gen-
eration by aortic vessels (unpublished data) and acetylcho-
line-induced vasorelaxation in phenylephrine pre-contracted
aortic rings [111]. This relaxation is mediated by •NO with-
out modification of O2

•� release by the vessel wall or
relaxation due to the cyclooxygenase pathway [111].

The anti-hypertension effects of the increase in •NO by
MUFA rich- and n-3 PUFA rich-diets when O2

•� genera-
tion is not enhanced may partly explain the beneficial prop-
erties of both types of fatty acids. However, the cardiovas-
cular disease may be prevented through the vasorelaxation
induced by •NO or, by the powerful antioxidant activity of
•NO on LDL [112]. The first hypothesis is supported by the
increase in coronary artery vasodilation in response to ace-
tylcholine infusion in heart transplant patients [113] and by
the reduction of blood pressure in healthy volunteers [114],
in patients with mild hypertension [115] and in rats genet-
ically predisposed to hypertension [116] after their diet is
supplemented with fish oil or DHA (Table 1).

At the vascular level, O2
•� reacts with •NO to generate

peroxynitrite and lipid-derived products such as LONO and
LOONO [117]. The stimulation of O2

•� production reduces

•NO levels unless NO synthase is induced simultaneously
with NADPH oxidase. Thus, the •NO/O2

•� ratio in cells
from rats fed an olive oil-rich diet is higher than in cells
from animals fed fish oil- or corn oil-rich diets [101].

5. Effects of unsaturated fatty acids on the hemostatic
system

The endothelium has a major function in both thrombotic
and coagulant activities. Heparan sulfate, •NO and prosta-
glandin I2 released by the endothelium are all antithrom-
botic agents. The endothelium also binds factors that pre-
vent coagulation. Moreover, it can balance interactions
between the coagulation and fibrinolytic systems. In athero-
sclerotic lesions, this balance is broken in favor of a pro-
thrombotic state, which can be particularly deleterious in the
later stages of the disease [118]. Furthermore, the mainte-
nance of the vascular tone depends on the release of vaso-
dilators (•NO and prostaglandin I2) and vasoconstrictors
(O2

•� and endothelin) [119]. De la Cruz et al. [120] and
Oubina et al. [121] noted that olive oil reduced thromboge-
nicity and platelet activation by modulating lipoprotein per-
oxidation and the subsequent eicosanoid production. More-
over, a MUFA-rich diet decreases the plasma levels of both
the von Willebrand factor, a tissue factor pathway inhibitor,
and the plasminogen activator inhibitor type 1, the main
inhibitor of fibrinolysis [122]. The beneficial effects of a
MUFA-rich diet on atherosclerosis may also be partly due

Table 1
Effect of the degree of unsaturated fatty acids on O2

•� and •NO generation and on vascular response

Cells or tissues Species Administration O2
• - •NO Response Ref.

Macrophages
Olive oil Human Diet NC — 99
Olive oil Rat Diet NC 1 101
Olive oil Mice Diet NC 1 100
Fish oil Human Diet 2 NC 102
Fish oil Rat Diet 1 1 101
Fish oil Rat Diet — 1cGMP 107
Fish oil Rat Diet — 1 108
Fish oil Mice Diet 1 1 100
n-3 PUFA Human Diet 2 — 99
Endothelial cells
EPA In vitro 1EDRF 109
Smooth muscle cells
EPA In vitro 1 109
Arteries
Olive oil Human Diet 2Art. pressure 106
Fish oil Human Diet Vasodilation 113
Fish oil Rat Diet Vasodilation 111
n-3 PUFA Human Diet 2Art. pressure 115
n-3 PUFA Pig Diet Relaxation 117

EDRF: endothelial derived relaxing factor.
-: not measured.
NC: not change.
2: decrease, 1: increase.
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to the changes that protect against thrombogenesis. Olive oil
also decreases the blood coagulation factors VII, a key
factor in thrombogenesis [123], XIIa and �2-antiplasmin
[124].

Chen et al. [125] reported that a fish oil-rich diet delays
the formation of arterial thrombus, probably by reducing
platelet aggregation, and the O2

•� release associated which
arterial injury. Thus, EPA and DHA decreased collagen-
induced platelet aggregation and thromboxane production
[126]. The loss of endothelium-derived •NO may have a key
function in early atherosclerosis through the enhancement
of platelet aggregation, monocyte adherence and chemo-
taxis, and the loss of vasorelaxation [127]. Likewise, we
observed that a fish oil-rich diet raises the endothelial pro-
duction of •NO induced by acetylcholine in intact aortic
rings [111]. Thus, fish oil may counterbalance the loss of
•NO in atherosclerosis and to reduce platelet aggregation,
monocyte adherence and chemotaxis.

6. Effects of unsaturated fatty acids on macrophages
and atheroma plaque

Oxidized LDL may directly damage the endothelium and
contribute to atheroma plaque formation through increased
adherence and migration of monocytes and T lymphocytes
into the subendothelial space. Oxidized LDL particles in-
duce cell adhesion by the formation of adhesive cell-surface
glycoproteins, e.g. VCAM-1, by the endothelium. Once
monocytes and lymphocytes enter the intima of the artery,
oxidized LDL from the endothelium and other substances
associated with atherogenesis trigger the differentiation of
monocytes into macrophages [128]. The uptake of oxidized
LDL by the macrophages, through scavenger receptors
leads to foam cell formation [128] and may alter the gene
expression of many growth-regulatory molecules and cyto-
kines.

Thus, monocytes/macrophages are present at all stages of
atherogenesis [129,130]. Macrophages do not only behave
as antigen-presenting cells to T lymphocytes, but also as
scavenger cells that remove noxious materials and as indi-
cators of the fibroproliferative process by their capacity to
form numerous growth factors, namely the platelet-derived
growth factor [131], interleukin-1 (IL-1) [132] and tumor
necrosis factor (TNF�) [132]. They are thus the principal
inflammatory mediator of cells in the atheromatous plaque
microenvironment.

6.1. Effects on macrophage adhesion

Yaqoob et al. [133] showed that a diet rich in MUFA
(rich in olive oil) significantly reduced ICAM-1 (CD54)
expression in human peripheral blood mononuclear cells.
Moreover, this MUFA diet also tends to decrease the ex-
pression of the macrophage-associated adhesion molecule

(CD11b), whereas it does not affect the expression of CD2,
CD3, CD4, CD7, CD8, CD21 or CD64. Taken together,
these data point to a direct link between the expression of
adhesion molecules and both the intake and composition of
dietary fat. The n-3 fatty acids, EPA and DHA, hinder the
adhesion and migration of monocytes and the processes
involving leukocyte-endothelial cell interactions such as
atherosclerosis and the inflammation associated with in-
creased endothelial expression of leukocyte adhesion mol-
ecules or endothelial activation [134]. Collie-Duguid and
Wahle [135] noted that EPA and DHA do not affect the
expression of ICAM-1, VCAM-1 or E-selectin in resting
human umbilical vascular endothelial cells. However, they
attenuate the induction of these adhesion molecules in IL-
1�-activated endothelial cells, which is expected to de-
crease the adherence and migration of leukocytes into the
vascular intima and other tissues, and thus decrease plaque
formation. De Caterina et al. [136] have recently reported
that DHA reduces the endothelial expression of VCAM-1,
E-selectin, ICAM-1, IL-6 and IL-8 in response to IL-1,
IL-4, TNF and bacterial endotoxin. They also noted that the
magnitude of these effects parallels the incorporation of
DHA into cellular phospholipids. In addition, DHA also
decreases the adhesion of human monocytes and monocytic
U937 cells to cytokine-stimulated endothelial cells and
VCAM-1 levels. Likewise, a fish oil-rich diet reduces basal
ICAM-1 expression in murine peritoneal macrophages
[137].

Stockton and Jacobson [138] have suggested the involve-
ment of AA in adhesion-signaling pathways. Thus, lipoxy-
genase oxidation generates leukotriene metabolites, which
regulate the spreading stage of cell adhesion, whereas
ERK1/2-induced cyclooxygenase synthesis generates pros-
taglandins, which regulate the later migration stage. Fur-
thermore, Barnett et al. [139] reported that cytosolic PLA2,
which mobilizes AA, is involved in the ICAM-1 expression
of endothelial cells. As cell spreading, adhesion and migra-
tion are regulated by AA metabolites and olive oil- and fish
oil-rich diets reduce the AA levels of membranes, AA
release and proinflammatory eicosanoid synthesis [101], the
impairment of eicosanoid (prostaglandins/leukotrienes) pro-
duction may be involved in the decrease of adhesion mol-
ecule expression, as suggested elsewhere [140].

Soluble forms of ICAM-1, VCAM-1 and E-selectins are
found in the plasma [141], probably as a result of shedding
from the surface of activated endothelial cells [142]. There
is a positive correlation between the extent of atherosclero-
sis and the plasma concentrations of soluble adhesion mol-
ecules [143–146]. Thus, soluble adhesion molecules levels
represent a molecular marker of atherosclerosis and predict
future myocardial infarction [147]. Fish oil diets modulate
soluble adhesion molecule levels [148,149]. However, the
functional significance of these effects is not fully under-
stood.
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6.2. Effects on receptor scavengers

Tissue macrophages within the aortic intima take up
cholesterol through the binding and uptake of oxidized LDL
to become the lipid-laden foam cells characteristic of early
atherosclerotic lesions [150,151]. Oxidized LDL uptake is
mediated via macrophage scavenger receptors (MSR) [152].
The role of MSR type A in plaque formation has been
determined by studies revealing that MSR-A knockout mice
fed a high-cholesterol diet show a significantly lower de-
velopment of atherosclerotic plaques [153].

An olive oil-rich diet impairs the mRNA levels of
MSR-A type I and type II [154]. The presence of lesions in
the double knockout mice suggested that other LDL scav-
enger receptors, such as CD36, are involved in atherogen-
esis [153]. An olive oil-rich diet decreases the mRNA levels
of CD36 in murine macrophages [154]. These data suggest
that part of the protective effect of olive oil against athero-
sclerosis is exerted via the reduction of the macrophage
uptake of oxidized LDL and subsequent foam cell forma-
tion. However, no study has revealed whether this is due to
the down regulation of gene transcription directly by unsat-
urated fatty acids or by other components of olive oil. On
the other hand, Miles et al. [137] reported that a fish oil-rich
diet can decrease the expression of MSR-A, thus altering
macrophage phenotype and function and enhancing mac-
rophage-induced plaque formation. MSR-A also appears to
have a role in macrophage adhesion. Therefore, blocking
MSR-A with antibodies prevents macrophage binding to
tissue-culture-treated plates [155]. Incubation of murine
macrophages with n-3 PUFA also decreases macrophage
adhesion to tissue cultured-plastic surfaces [156]. In sum-
mary, the MUFA and n-3 PUFA from the diet may reduce
macrophage extravasation and persistence and, so fatty
streak formation by macrophages within the arterial intima.
These effects may be related to the modulation of the
expression of adhesion molecules and scavenger receptors.

6.3. Effects on macrophage secretion

Macrophages are effective scavenger cells, and they are
also involved in the hemostatic and fibroproliferative pro-
cess thanks to their capacity to secrete cytokines, eico-
sanoids, •NO and numerous growth factors. During the
process of atherogenesis, these autacoids may act in cell
recruitment and migration, cell proliferation and the control
of lipid and protein synthesis as well as in vascular events
such as vasodilation, vasoconstriction and coagulation.

Macrophages from rats fed olive oil or fish oil diets
reduced the levels of AA in membranes, their release and
their subsequent metabolism to biosynthesize proinflamma-
tory (proatherogenic) eicosanoids such as prostaglandins
(series 2) and leukotrienes (series 4) [98,101]. These data
are in agreement with Yaqoob and Calder [100] and Wal-
lace et al. [157] who observed that macrophages isolated
from mice fed with fish oil diet produced less PGE2 and

LTB4 than cells from animals fed with a low fat diet or a
high fat diet containing coconut oil. Macrophages from
mice fed a Menhaden oil-rich diet showed suppression of
basal TNF� mRNA and TNF� and IL-1� induced by lipo-
polysaccharides [157,158]. This way, the human gene ex-
pression of platelet-derived growth factor and monocyte
chemoattractant protein-1 can be reduced by dietary n-3
PUFA in unstimulated and adherence-activated monocytes
[159]. Likewise, dietary supplementation with n-3 PUFA
ethyl esters decreases procoagulant activity and IL-6 pro-
duction by human mononuclear cells [160]. The production
of lipoprotein lipase also decreased in these conditions,
while the release of •NO in response to TNF increased
[156]. Phorbol-stimulated cells from animals fed an olive
oil- or fish oil-rich diet produced higher levels of •NO than
rats fed a corn oil-rich diet [101]. There is a growing body
of evidence that alterations of both the synthesis and activ-
ities of •NO can promote atherosclerosis-related diseases
and thrombosis-mediated vascular injury [127], as men-
tioned above.

7. Effects of unsaturated fatty acids on vascular
smooth muscle cell proliferation

The proliferation of VSMC is a key characteristic of
atherosclerosis progression [119] and a strategic target for
preventing the development of arterial lesions. Furthermore,
it is a major limitation to the success of interventional
revascularization procedures. The correlation between li-
poproteins and VSMC growth has been extensively studied.
LDL may enhance growth in mitogen-stimulated cells
[161]. Elinder et al. [162] reported an increase in PLA2 in
atherosclerotic lesions, mainly in macrophages and VSMC.
Furthermore, oxidized phospholipids of LDL are more sus-
ceptible to hydrolysis by PLA2 [163], with the subsequent
AA release. Anderson et al. [164] provided direct evidence
that PLA2 is involved in the control of VSMC proliferation
and indicated that cytosolic PLA2-mediated AA release is
critical for this event.

Terano et al. [165] observed that the PUFA of both n-6
and n-3 series inhibit VSMC proliferation. EPA and DHA
hinder DNA synthesis and cyclin-dependent kinases and
stopped the progression from G1 to the S phase of the cell
cycle. These effects are related to the amount of lipid per-
oxides formed in the cells [166]. These results are supported
by Nakayama et al. [167] who showed that EPA signifi-
cantly inhibits the expression of tumor growth factor �
mRNA and Cdk2 activity in VSMC. Likewise, Mata et al.
[168] cultured VSMC in the presence of sera from volun-
teers fed with olive oil, sunflower oil or fish oil diets.
[3H]thymidine incorporation into DNA was significantly
reduced by MUFA- and n-3 PUFA-rich diets. These data
may be linked to the impairment of eicosanoid synthesis in
these dietary conditions [98,101] and to a critical effect on
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cell cycle control through modulation of the levels of the
proteins of the cell cycle machinery [169].

8. Conclusions

The effects of MUFA and n-3 PUFA on LDL levels,
LDL oxidation, prooxidant species production, cellular re-
sistance to oxidative stress, •NO and eicosanoid production,
cell adhesion molecules, receptor scavenger expression and
VSMC proliferation show that both dietary fats are crucial
in modulating pivotal elements of the development of ath-
erosclerosis. The preventive effects of MUFA on athero-
sclerosis development may be due to the enhancement of
HDL-cholesterol levels and the impairment of LDL-choles-
terol levels, LDL susceptibility to oxidation, cellular oxida-
tive stress, thrombogenicity and the formation of atheroma
plaque (Fig. 2), whereas n-3 PUFA consumption increases
HDL-cholesterol levels. This and the reduction of thrombo-
genicity, atheroma plaque formation and VSMC prolifera-
tion may account for the beneficial effects of PUFA on the
prevention of atherosclerosis (Fig. 3). These findings point
to the beneficial effects of certain components of the Med-

iterranean diet, which is rich in olive oil and fish. However,
we cannot confirm whether this is merely due to changes in
the fatty acid composition of the diet or to other oil com-
ponents.
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